Chemosensoren
 Zeitaufgelöste Messungen zur Quantifizierung von Multianalytgemischen in Wasser Ein neuer Weg zur Reduktion der Sensoranzahl

Matthias Vollprecht, Frank Dieterle, Günter Gauglitz

Institut für Physikalische und Theoretische Chemie, Auf der Morgenstelle 8, D-72076 Tübingen, F.R.G

Motivation

- Üblicherweise werden zur Kalibrierung von Multianalytgemischen Höhe, Fläche oder Steigung des Sensorsignals genutzt (1). Dabei sind in einem Sensorarray in der Regel mindestens genauso viele Sensoren wie zu quantifizierende Analyte erforderlich.
Ein Ansatz zur Reduktion der Sensoranzahl beruht darauf, die zeitspezifische Information von Sensorantworten zu nutzen. Durch zeitaufgelöste Messungen können bei
unterschiedlichen Kinetiken der Analyt-Sorption / -Desorption unterschiedliche Signalprofile für einen Sensor erhalten werden (2a, 2b).
- Am Beispiel der homologen Alkohole Methanol bis 1-Butanol sollten nach Charakterisierung des Ansprechverhaltens der Einzelanalyte die zeitspezifischen Informationen von dre polymerbasierten Sensoren zur Quantifizierung eines quartären Gemisches in Wasser genutzt werden.

Messprinzip: Reflektometrische Interferenzspektroskopie (RIfS)

Der Weg zum Sensorsigna
Mehrfachreflexion an Schichtsystem und wellenlängenaufgelöste Detektion der reflektierten Teilstrahlen \Rightarrow Interferenzspektrum

- Reversible Polymerquellung unter Analytexposition
- Änderung der optischen Schichtdicke (Produkt aus physikalischer Schichtdicke d und Brechungsindex n)
- Versatz der Extrema im Interferentzspektrum
- Polynomanpassung an den Kurvenverlauf eines lokalen Extremums
Somit: Zeitaufgelöste Registrierung optischer Schichtdickenänderungen bei Wechselwirkung Polymer - Analyt als Sensorsignal

Polymersystheme

Polyimid PI-2566

Mikroporöses Polymer: mittleres Porenvolumen $v_{0}=0.118 \mathrm{~nm}^{3}$
Hochverzweigte Polyester (HBP) ${ }^{(a)}$

HBP 1168: $\mathrm{B}=-\mathrm{OAC}$
HBP 1183: $\mathrm{B}=-\mathrm{OH}$

Charakterisierung des Ansprechverhaltens

Empfindlichkeiten bei
Einzelanalytkalibrierung
Zeitaufgelöste Messungen

${ }_{20 \mathrm{man}}^{2}$

Bei Auswertung der Signalhöhe am Ende der Analytexposition ergeben sich bei Einzelanalytkalibrierungen für die beiden HBP-Systeme ähnliche Empfindlichkeiten
Bei zeitaufgelösten Messungen ergibt sich für die beiden HBP-Systeme dagegen ein unterschiedliches Ansprechverhalten bei den höheren Homologen:
\Rightarrow rasche Sorption/Desorption bei HBP 1168 \Rightarrow langsame Sorption/Desorption bei HBP 1183

Das Ansprechverhalten des mikroporösen Polyimidsystems ist sehr stark von der Analytgröße abhängig:
\Rightarrow rasche Sorption/Desorption für Methanol \Rightarrow sehr langsame Sorption/Desorption für Propanol und Butanol
Somit:
Homologe Alkohole zeigen sehr unterschiedliche
Wechselwirkungskinetiken mit den drei
untersuchten Polymersystemen

Gewichtung der zeitlichen Information

Variablenselektion bei der Datenauswertung zur Berücksichtigung der unterschiedlichen zeitlichen Information eines Sensorsignals \Rightarrow Berücksichtigung signifikanter Messpunkte

- Besondere Bedeutung der Messpunkte zu Beginn und gegen Ende der Sorption
\Rightarrow Optimierung der Messzeit möglich

Multivariate Datenanalyse: Quantifizierung quartäres Gemisch

- Vollfaktorieller Versuchsplan:

Kalibrierdatensatz: $4^{4}=256$ Konzentrationen
Validierdatensatz: $3^{4}=81$ Konzentrationen

$$
\begin{aligned}
& \text { 1-Butanol } \\
& \text { - Vailation Data }
\end{aligned}
$$

- Datenauswertung mit wachsendem Neuronalen Netzwerk
- Optimierung der Netz-Topologie durch Variablenselektion
- Aufbau des endgültigen Netzwerks unter Berücksichtigung der signifikanten Messpunkte und Training mit vollständigem Kalibrierdatensatz
- Optimiertes Netzwerk benutzt insgesamt 20 signifikante Messpunkte der drei Sensoren:

- Konzentrationsvorhersage aller vier Alkohole im Gemisch möglich:
\Rightarrow Beste Vorhersage für Methanol
\Rightarrow Schlechteste Vorhersage für 1-Propanol
- Bei Verwendung nur eines Sensors zur Datenauswertung
$\Rightarrow \mathrm{PI}-2566$: Besonders gute Vorhersage von
Methanol und Ethanol
\Rightarrow HBP 1183: Besonders gute Vorhersage von Propanol und Butano
\Rightarrow HBP 1168: keine besondere Bedeutung bei der Vorhersage eines bestimmten Alkohols

Zusammenfassung

- Quantifizierung des quartären Alkoholgemisches in Wasser mit einem Sensorarray aus nur drei polymerbasierten Sensoren durch Auswertung der unterschiedlichen Sorptionskinetiken bei Wechselwirkung Analyt - Polymer möglich

Datenauswertung mit wachsenden Neuronalen Netzen unter Variablenselektion ermöglicht Gewichtung der unterschiedlichen zeitlichen Information eines Sensorsignals

- Durch Variablenselektion bei der Datenauswertung ist Optimierung der Messung möglich
\Rightarrow Verkürzung der Messzeit auf signifikante Messpunkte
- Einsatz eines PI 2566-Einzelsensors zum Nachweis eines Methanol-Ethanol-Gemisches bzw. eines HBP 1183-Einzelsensors zum Nachweis eines Propanol-Butanol-Gemisches möglich

Danksagung:

Unser besonderer Dank gilt Frau Dr. B. Voit und Herrn Dr. K.-J. Eichhorn vom Institut für Polymerforschung Dresden für die Bereitstellung der Polymersysteme

Eberhard Karls

