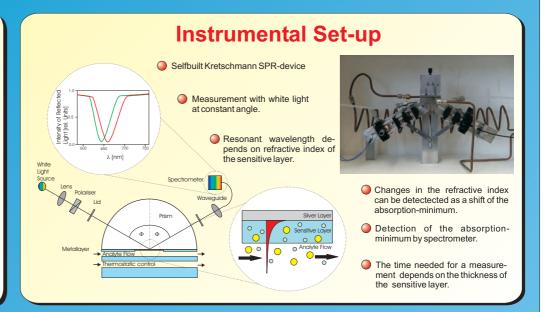
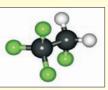


Quantification of Binary Mixtures of the Freones R22 and R134a by Surface Plasmon Resonance


S. Busche, F. Dieterle, B. Kieser, G. Gauglitz

Institute of Physical Chemistry, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen stefan.busche@ipc.uni-tuebingen.de http://barolo.ipc.uni-tuebingen.de

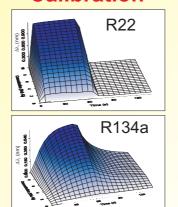


- O Chlorofluorocarbons cause damage to the ozone layer. The goal of this work was the detection of R22 in the vapour of R134a using Surface Plasmon Resonance
- A single sensor set-up was used for the multicomponent analysis. The temporal information of the sensor is evaluated.
- A microporous polycarbonate was used as sensitive layer. The thicknes of the sensitive laver was varied between 60 and 300 nm.
- The sensor response during analyte sorption and desoprtion was time-resolved evaluated by neural networks. Some hundred binary mixtures of R22 and R134a were measured by SPR

Analytes

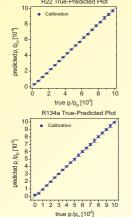
R22 Difluorochloromethane R134a 1,1,1,2-Tetrafluoroethane

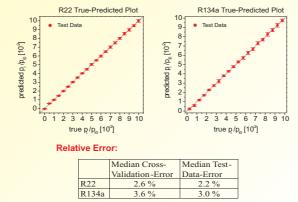
Microporous polymer:


median pore diameter

0.1 nm

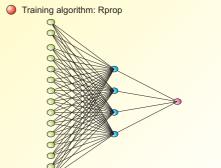
Sensitive Layer


Polycarbonat Makrolon® Makrolon M2400, Baver AG Leverkusen, Germany


- Thickness of the sensitive layer: 60 nm
- Calibration of both analytes between 0 and 10 percent by volume

Results

441 different mixtures as calibration-set Each mixture was evaluated by 21 neural nets R22 True-Predicted Plot



Data Evaluation

- Input variables were centered and standardized
- Output variables were scaled from -0.9 to 0.9
- One neural net per analyte
- Activation functions of units: tanh

Output Lave Hidden Lave

Summary and Outlook

- By the variation of the layer thickness the measurement-time can be reduced to 60 seconds of analyte exposition.
- Short measurment times can be realised.
- The results show that detection of the two analytes with only one sensor can be realised very good.
- The Prediction of 400 independent test mixtures (not used for calibration) was very exact for R22 and R134a.

A high purity of R134a can be guaranteed.

Measurement of other small analytes with the same instrumental set-up is possible.

Calibration