F. Dieterle, S. Müller-Hagedorn, H. Liebich, G. Gauglitz

Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, Auf der Morgenstelle 8, D - 72076 Tübingen
Medizinische Universitätsklinik, Otfried-Müller-Strasse 10, D - 72076 Tübingen

Einleitung

Brustkrebs ist die häufigste Krebsart bei Frauen in Europa und in den USA.Ziel der aktuellen Krebsforschung ist es, eine Diagnose aufgrund möglichst objektiver Labordaten zu ermöglichen.In dieser Studie wurden natürliche und modifizierte Nukleoside im Urin mit Hilfe der HPLC quantifiziert und mit neuronalen Netzen zur Diagnose von Brustkrebs ausgewertet.

Datenauswertung

Die Datenauswertung erfolgte mit Hilfe der Learning Vector Quantization (LVQ), einer speziellen Art neuronaler Netze.

Aus den Kalibrationsdaten wurden Prototypen generiert. Die Testdaten wurden über die größte Ähnlichkeit zu den Prototypen klassifiziert.

Die Testdaten wurden mit Hilfe einer vollen Kreuzvalidierung aus dem Datensatz von 85 Krebspatienten und 121 gesunden Personen erzeugt.

Schlußfolgerungen

Modifizierte und natürliche Nukleoside im Urin eignen sich als Tumormarker.

O Die Kombination der HPLC zur Analytquantifizierung und der LVQ zur Datenanalyse zeigen ein hohes Potential zur Brustkrebsdiagnose.

Experimenteller Aufbau

Spontanurinproben wurden sowohl von 85 Brustkrebspatientinnen kurz vor der operativen Tumorentfernung als auch von 121 gesunden Frauen gesammelt.

12 Nukleoside wurden aus den Urinproben mittels der Affinitätschromatographie mit Phenylboronsäure, die eine besondere Affinität zu den cis-diol Gruppen der Nukleoside aufweist, isoliert und dann über eine RP-HPLC Methode mit UVDetektion über einen internen Standard quantifiziert.

Zur interindividuellen Vergleichbarkeit wurden die Nukleosidkonzentrationen auf Kreatinin bezogen.

Ergebnise

- Bei den Trainingsdaten wurden 88,2\% der Krebspatienten und 96,7\% der gesunden Personen richtig klassifiziert.
\bigcirc
Bei den Testdaten wurden 70,6\% der Krebspatienten und 90,1\% der gesunden Patienten richtig klassifiziert.In der Abbildung ist eine 2-dimensionale Projektion des 12-dimensionalen Raums der Nukleoside mit den Prototypen und den projezierten Testdaten zu sehen.

O Die wenigen falsch klassifizierten Muster liegen im Grenzgebiet von verschiedenen Prototypen und sind somit als Grenzfälle einzustufen.

