Chemosensoren

Diskriminierung von Gasen mit dünnen mikroporösen Polymerfilmen zur Steigerung der Selektivität von Sensorarrays

 Georg Belge, Carmen Betsch, Frank Dieterle, Günter GauglitzInstitut für Physikalische und Theoretische Chemie, Auf der Morgenstelle 8, D-72076 Tübingen, F.R.G

Motivation

Chemische polymerbasierte Sensoren gewinnen im Bereich der Umwelt- und Prozeßanalytik zunehmend an Bedeutung. Seit längerem macht man sich die Gaspermeabilität zur Trennung von Gasen zu Nutzen. Das eingesetzte mikroporöse Polymer (Ultrason 2010) zeigt durch Kontrolle der Analytbewegungen in der Matrix Selektivität als chemischer Sensor zur Diskriminierung von volatile organic compounds (VOC's), d.h. das hier verwendete Polymer zeigt Molekularsiebeigenschaften, welche Diskriminierungsfähigkeiten enorm steigern. Um den Molekularsiebeffekt zu nutzen, müssen Membranen mit Poren hergestellt werden, deren Durchmesser zwischen den Durchmessern der zu trennenden Gasteilchen liegen und somit eine definierte Porenstruktur aufweisen. Als Erkennungskriterium nutzt man die Teilchengröße des Analyten, denn je größer das potentielle Analytmolekül, desto stärker wird das potentielle Analytmolekül, desto stanker
dessen Sorption aufgrund der Porengrößenverteilung dessen Sorption aufgr
Als Meßmethodik wurde die Reflektometrische InterAls Meßmethodik wurde die Reflek
ferenzspektroskopie eingesetzt (RIfS).

Messprinzipien

RIfS - Reflektometrische Interfernzspektroskopie

Wellenlänge

Spektrometer

Auswertung der RIfS - Messungen

- Kontinuierliche Messung des Produktes aus Schichtdicke d und Brechungsindex n optischer Schichtsys-teme
- Schichtdickenänderung durch molekulare Wechselwirkungen
- Quellung von Polymeren

Polymere

Ultrason 2010

Polyethersulfon
Das Polymer bildet eine mikroporöse Membran, mit der die erzielte Größenselektivität gezeigt werden kann.
Mittleres Hohlraumvolumen $0,080 \mathrm{~nm} 3$

Referenzen

Analyte

reone:

Die beiden verwendeten Analyten gehören ur Verbindungsklasse der Chlorfluorkohlenstoffe (CFK), die unter dieser Sammelbezeichnung aufgeführten Verbindungen kommen vielfach als Aerosoltreibmittel, Feuerlösch- und Kältemittel in den Handel. Die häufig niedermolekularen aliphatischen und cycloaliphatischen Kohlenstoffverbindungen sind meist vollständig durch Chlor und/oder Fluor substituiert.

Diskriminierung der Gase

Kalibriermessungen
Ultrason 2010
Verlauf der relativen Schichtdickenänderung

- Vergleich der mikroporösen Polymermembran mit einer der Referenzen

- Aufzeichnung der Kalibriergeraden von R22 und R134a
- Konzentrationsbereich von 0 bis 33 Vol.-\%

Multivariate Datenanalyse der Analytgemische

- Standardisierung der Sensorsignale
- Ein neuronales Netz pro Analyt
- Aktivierungsfunktionen der Units: tanh
- Trainingsalgorithmus: Rprop
- Prunning der Links und Units
- Early Stopping des Trainings
- Der Kalibrationsdatensatz bestand aus 108 Messungen von 36 verschiedenen Gemischzusammensetzungen
- Der Testdatensatz bestand aus 36 Gemischen und war unabhängig von dem Kalibrationsdatensatz
- Die Konzentrationsvorhersage von R22 ist besonders bei niederen Konzentrationen für den Testdatensatz sehr gut
- Die Konzentrationsvorhersage für R134a ist aktzeptabel

True-Predicted Plot von R134a, Testdaten

Zusammenfassung

- Die zeitaufgelösten Messungen erlauben eine größen-selektive Diskriminierung der Freone R22 und R134a.
- Zeitaufgelöste Messungen ermöglichen das Einstellen der Reversibittät der sensitiven Schichten, da diese weniger lang dem Analyten ausgesetzt sind.
- Die parallele Detektion von R22 und R134a ist besonders bei kleinen Konzentrationen sehr genau.
- Durch eine Verschiebung des Versuchsplanes zu kleineren Konzentrationen werden in Zukunft kleinste Mengen der beiden Freone im Gemisch nachweisbar und quantifizierbar sein.

Danksagung:

Diese Arbeiten wurden mit Mittel der AiF Nr. 12254/N gefördert.

Eberhard Karls
Universität Tübingen

